Characterization of microbial communities removing nitrogen oxides from flue gas: the BioDeNOx process.
نویسندگان
چکیده
BioDeNOx is an integrated physicochemical and biological process for the removal of nitrogen oxides (NOx) from flue gases. In this process, the flue gas is purged through a scrubber containing a solution of Fe(II)EDTA2-, which binds the NOx to form an Fe(II)EDTA.NO2- complex. Subsequently, this complex is reduced in the bioreactor to dinitrogen by microbial denitrification. Fe(II)EDTA2-, which is oxidized to Fe(III)EDTA- by oxygen in the flue gas, is regenerated by microbial iron reduction. In this study, the microbial communities of both lab- and pilot-scale reactors were studied using culture-dependent and -independent approaches. A pure bacterial strain, KT-1, closely affiliated by 16S rRNA analysis to the gram-positive denitrifying bacterium Bacillus azotoformans, was obtained. DNA-DNA homology of the isolate with the type strain was 89%, indicating that strain KT-1 belongs to the species B. azotoformans. Strain KT-1 reduces Fe(II)EDTA.NO2- complex to N2 using ethanol, acetate, and Fe(II)EDTA2- as electron donors. It does not reduce Fe(III)EDTA-. Denaturing gradient gel electrophoresis analysis of PCR-amplified 16S rRNA gene fragments showed the presence of bacteria closely affiliated with members of the phylum Deferribacteres, an Fe(III)-reducing group of bacteria. Fluorescent in situ hybridization with oligonucleotide probes designed for strain KT-1 and members of the phylum Deferribacteres showed that the latter were more dominant in both reactors.
منابع مشابه
Isolation of an Aerobic Denitrifying Bacterial Strain from a Biofilter for Removal of Nitrogen Oxide
A strain of bacteria CP1 with high nitrogen removal efficiency was newly isolated from the biofilm of a biofilter for removal of NOx from flue gas. The isolate was identified as Pseudomonas aeruginosa based on its physiological and biochemical characteristics and the results of 16S rRNA gene homology analysis. The new isolate had a high denitrifying ability, removing 98.49% of the nitrate in a ...
متن کاملHazardous Waste Disposal by Thermal Oxidation
Ideally, the flue gas resulting from high-temperature oxidation of hydrocarbons (HC) contains CO 2 , H 2 O, N 2 , O 2 and some acceptable levels of oxides of nitrogen (NOx) and oxides of sulfur (SOx). In reality, the flue gas from a combustion process contains CO 2 , H 2 O, N 2 , O 2 and some concentration of carbon monoxide (CO), unburned hydrocarbons (UHC), NOx and SOx .
متن کاملMicroalgal biomass production and on-site bioremediation of carbon dioxide, nitrogen oxide and sulfur dioxide from flue gas using Chlorella sp. cultures.
The growth and on-site bioremediation potential of an isolated thermal- and CO₂-tolerant mutant strain, Chlorella sp. MTF-7, were investigated. The Chlorella sp. MTF-7 cultures were directly aerated with the flue gas generated from coke oven of a steel plant. The biomass concentration, growth rate and lipid content of Chlorella sp. MTF-7 cultured in an outdoor 50-L photobioreactor for 6 days wa...
متن کاملTheoretical and Experimental Investigation of SO2 Adsorption from Flue Gases in a Fluidized Bed of Copper Oxide
Among the air pollutants, sulfur dioxide has been given special emphasis for posing dangers to the environment. SO2 emissions in the air have harmful effects on human health and the environment. Respiratory diseases and exacerbation of heart diseases are among dangerous symptoms for human health, especially when high concentrations of SO2 are emitted. Therefore, in the present study, a wide var...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 71 10 شماره
صفحات -
تاریخ انتشار 2005